Year 4

The main objective of our proposal is to isolate therapeutic stem and progenitor cells derived from human embryonic stem cells (hESCs) that can give rise to blood and heart cells. Our approach involves developing differentiation protocols to drive hematopoietic (blood) and cardiac (heart) development of hESCs, then to identify and isolate stem/progenitor cells using monoclonal antibodies (mAbs) specific to surface markers expressed on blood and heart stem/progenitor cells, and finally to characterize their functional properties in vitro and in vivo. In addition, we sought to develop mAbs that specifically bind to undifferentiated hESCs for removal of residual teratoma (tumor)-initiating cells from therapeutic preparations, to ensure transplantation safety.

We have made substantial progress toward achieving these goals. First, we discovered that the initial differentiation of hESCs occurs through only 4-5 different progenitor types, of which one is destined to give rise to heart lineages. We purified this population using four novel cell surface markers (ROR2, PDGFRα, KDR, and CD13), and found a significant enrichment of cardiomyocyte clones in colony formation assays that we developed. This subset also expressed particularly high levels of cardiac genes and was receptive to further differentiation into beating cardiomyocytes or vascular endothelial cells. When transplanted into immunodeficient mice these progenitors differentiated into ventricular myocytes and vascular endothelial cells. We have also successfully developed a human fetal heart xenograft model to test hESC-derived cardiomyocyte stem/progenitor cells in human heart tissue for engraftment and function.

Second, we have optimized cell culture conditions and cell surface markers to sort hematopoietic progenitors derived from hESCs. In doing so, we have mapped the earliest stages of hematopoietic specification and commitment from a bipotent hematoendothelial precursor. Our culture conditions drive robust hematopoietic differentiation in vitro but these hESC-derived hematopoietic progenitors do not achieve hematopoietic engraftment when transplanted in mouse models. Furthermore, we overexpressed the anti-apoptotic protein BCL2 in hESCs, and discovered a significant improvement in viability upon single cell sorting, embryoid body formation, and in cultures lacking serum replacement. Moving forward, we feel the survival advantages exhibited by this BCL2-expressing hESC line will improve our chances of engrafting hESC-derived hematopoietic stem/progenitor cells.

Third, we identified a cocktail of 5 commercial and 1 novel mAbs that enable specific identification of human pluripotent cells (hESCs and induced pluripotent cells). We have found combinations of 3 pluripotency surface markers that can remove all teratoma-initiating cells from differentiated hESC and induced pluripotent stem cell (iPSC) populations prior to transplant. While these combinations can vary depending on the differentiation culture, we have generated a simple, easy-to-follow protocol to remove all teratogenic cells from large-scale differentiation cultures.

In summary, we accomplished most of the goals stated in our original proposal. We successfully achieved cardiac engraftment of an hESC-derived cardiomyocyte progenitor using a novel human heart model of engraftment. While we unfortunately did not attain hematopoietic engraftment of hESC-derived cells, we are exploring a strategy to address this. Our research has led to four manuscripts: one on the protective effects of BCL2 expression on hESC viability and pluripotency (published in PNAS, 2011), another describing markers of pluripotency and their use in depleting teratogenic potential in differentiated PSCs (accepted for publication in Nature Biotechnology), and two submitted manuscripts, one describing a novel xenograft assay to test PSC-derived cardiomyocytes for functional engraftment and the other describing the earliest fate decisions downstream of a PSC.