Year 3
During the past two years of this grant, we have generated compounds that have the ability to block the function of BCL6. In previous work, we had identified BCL6 as a key requirement for persistence of leukemia stem cells, which are the root cause of leukemia relapse and drug-resistance in patients. Over the past six months, we have focused on validating the new compounds based on functional tests that allow us to measure the depth and durability of BCL6 blockade in cell-based assay. To this end, we designed a large-scale petri-dish system in which we measured the efficacy of 11 lead compounds and their derivatives to abrogate the ability of leukemia cells to form colonies, a capability that reflects the activity of leukemia stem cells. This assay allowed us to prioritize 4 compounds for further testing. In parallel, we developed a biological assay to verify that the compounds are actually hitting their target, i.e. BCL6, by measuring the activity of genes that are typically regualted by BCL6. These genes include tumor suppressors like p53 and Arf and we measured the ability of our compounds to re-instate p53 and Arf expression. We found that p53 and Arf were reinstated only by 2 of our 4 lead candidates, so current trouble-shooting efforts will attempt to clarify why this is the case and whether we can modify these two compounds to improve their on-target efficacy. The other two compounds will move forward in the next derivative screen, in which we perform a fragment-based, screen, i.e. test multiple derivative based on addition and removal of small structural changes (fragments). Other caveats to address in the next year will be stability (half-life) of the lead compounds, bioavailability (how much and how long the compound will be available in the blood stream) and toxicity (how much of the compound will be tolerated by mice, is there indication of damage to tissues upon long-term treatment?).The goal of these studies will be to make a strong case for IND-enabling studies, i.e. to enter a formal, government-regulated process to convert the strongest of our compound into an FDA-approved drug for potential clinical testing in patients with drug-refractory AML and ALL.