Year 1

This grant develops a tissue bioengineering approach to stem cell transplantation as a treatment for brain repair and recovery in stroke. Stem cell transplantation has shown promise as a therapy that promotes recovery in stroke. Stem cell transplantation in stroke has been limited by poor survival of the transplanted cells. The studies in this grant utilize a multidisciplinary team of bioengineers, neuroscientists/neurologists and stem cell biologists to develop an approach in which stem or progenitor cells can be transplanted into the site of the stroke within a biopolymer hydrogel that provides an environment which supports cell survival and treatment of the injured brain. These hydrogels need to contain naturally occurring brain molecules, so that they do not release foreign or toxic components when they degrade. Further, the hydrogels have to remain liquid so that the injection approach can be minimally invasive, and then gel within the brain. In the past year the fundamental properties of the hydrogels have been determined and the optimal physical characteristics, such as elasticity, identified. Hydrogels have been modified to contain molecules which stem or progenitor cells will recognize and support survival, and to contain growth factors that will both immediately release and, using a novel nanoparticle approach, more slowly release. These have been tested in culture systems and advanced to testing in rodent stroke models. This grant also tests the concept that the stem/progenitor cell that is more closely related to the area within the brain that receives the transplant will provide a greater degree of neural repair and recovery. Progress has been made in the past year in differentiating induced pluripotent stem cells along a lineage that more closely resembles the part of the brain injured in this stroke model, the cerebral cortex.