Year 1
Autism Spectrum Disorders (ASDs) are a heritable group of neuro-developmental disorders characterized by language impairments, difficulties in social integrations, and the presence of stereotyped and repetitive behaviors. There are no treatments for ASDs, and very few targets for drug development. The goal of this CIRM project is to develop a series of in vitro screens for drugs that might affect the underlying cellular defects in ASDs.
Since ASDs are uniquely human, we proposed to design, optimize and conduct high-throughput chemical screens using human neurons derived from induced pluripotent stem cells (iPSCs). Our lab identified cellular defects in neurons derived from patients with Timothy Syndrome (TS), a syndromic disorder often presenting with autism that is caused by a rare mutation in a calcium channel. In our project, we proposed to develop in vitro screening assays for ASDs based on these TS phenotypes, and to screen these assays to identify drugs that might affect behavioral symptoms of autism. In the first year of this award, we conducted preliminary screens and found that certain calcium channel modulators reverse some of the differentiation defects that we observe in these cells. We also extended observations that we had made in mice and showed that TS neurons have defects in the structure and length of their dendrites, measurable features that we can use as the basis for additional drug screens. We have therefore progressed within the aims of the original award.
For the remainder of the grant, however, we are proposing to broaden the scope of this project to include iPSC-based screens using neurons from patients with more prevalent forms of ASDs. In other research in our lab, we have characterized phenotypes in neurons derived from patients with two other diseases that are more prevalent than TS: DiGeorge Syndrome (DGS) and Phelan-McDermid Syndrome (PMDS), two neurodevelopmental disorders resulting from deletions within chromosome 22 and patients present symptoms that often include autism. We have shown that these cells have defects in the length of their dendrites, in the structure and function of their synapses, and in their ability to transmit electrical impulses. We propose to broaden the scope of our work to develop screens for TS, DGS, and PMDS. These screens will serve as a basis for identifying drugs that lessen or reverse cellular defects in these disorders, and thus may lead to more generalized treatments for ASDs.
We believe that this research not only fulfills critical steps in the development of a novel test for potential ASD treatments, but demonstrates the power of iPSC technology for understanding the underlying mechanisms of neurological disorders. Expanding the scope of our original project will help us increase the impact of our studies on therapeutic development and on the understanding of the neurobiology of ASDs.