Year 2

A key bottleneck in reprogramming technology to make induced pluripotent stem (IPS) cell lines is the ability to make large numbers of lines from large numbers of patients in a way that is cost effective and minimizes labor. Our project has focused primarily on dropping the cost of characterization of candidate lines. We have made a number of discoveries about the behavior of candidate reprogrammed lines that allow us to drop cost and labor needed for candidate reprogrammed line characterization. We measured the frequency of candidate lines that were well-behaved in a large retroviral reprogramming experiment, which allows us to rigorously estimate how many candidate lines must be picked and analyzed if 4-6 high-quality lines are to be generated for every patient fibroblast sample subjected to typical retroviral reprogramming technology. We then continued our work on developing a combination of different array and microfluidic chip technologies to measure the chromosome number in each candidate line and the ability of each line to be pluripotent, i.e., to be able to generate many different type of cells similar to embryonic stem cells. We are optimistic that our work will simplify and drop the cost of the characterization process so that it costs far less than before our work was initiated.