Disease Focus: Heart Disease


Activation of patient-specific endogenous myocardial repair through the exosomes generated from the hypoxic iPSC-derived cardiomyocytes (iCMs).

Research Objective This proposal will provide direct evidence of clinical implementation of patient-specific iPSC products by validating the efficacy of autologous, cell-free exosome therapy. Impact Five-year survival of heart failure is a dismal 50% and is top diagnosis of hospital admission. Exosomes offer a feasible and effective cell-free therapy by activating endogenous myocardial repair. Major […]

Exosomal Y-RNAs as mediators of bioactivity of cardiac-derived cell therapy

Research Objective We propose to dissect the contribution of Y-RNAs, small non-coding RNA species enriched in CDC-exosomes, in mediating the effect of CDC-exosomes on cardioprotection and macrophage polarization. Impact Examining the contribution of highly represented RNA species in CDC-exo could allow a better understanding of the mechanism of action of CDC-exo and modulation of their […]

Human iPSC-derived micro-heart muscles for high-throughput cardiac drug discovery

Translational Candidate In vitro miniaturized array of heart muscle amenable for use in efficient high-throughput drug discovery and screening campaigns. Area of Impact Effective high-throughput screening of drugs on human heart muscles does not exist, hindering the discovery of therapeutics to treat heart failure. Mechanism of Action Current approaches for drug discovery often miss a […]

A Novel, Robust and Comprehensive Predictive Tool Using Human Disease-Specific Induced Pluripotent Stem Cells for Preclinical Drug Screening

Translational Candidate A library of induced pluripotent stem cell-derived cardiomyocytes from healthy subjects as well as patients with common hereditary cardiac disorders Area of Impact Preclinical toxicity screening and drug discovery Mechanism of Action Patients with pre-existing cardiac conditions are more susceptible to drug-induced cardiotoxicity than general population. Including iPSCs derived from this subset of […]

Pro-regenerative infusible ECM biomaterial for treating acute myocardial infarction

Translational Candidate Injectable biomaterial derived from the natural scaffolding of pig hearts Area of Impact Improving the quality of life of patients with heart attacks Mechanism of Action The proposed mechanism of action is through recruitment of the body's own stem cells and reducing inflammation to heal the heart. Unmet Medical Need The prevalence of […]

Autologous MPO Knock-Out Hematopoietic Stem and Progenitor Cells for Pulmonary Arterial Hypertension

Translational Candidate Autologous MPO Knock-Out Hematopoietic Stem and Progenitor Cells Area of Impact Pulmonary Arterial Hypertension (PAH), initially associated with Scleroderma (Systemic Sclerosis -SSC), and then applied to other causes of PAH Mechanism of Action Myeloperoxidase (MPO) protein produced by neutrophils plays a critical role in the development of PAH. Disrupting the MPO gene in […]

IND-enabling Studies of Wearable Evolve-FSTL1 for Cardiac Regeneration after MI

Translational Candidate The therapeutic candidate is the Regencor’s proprietary Cardio-Regenerative Factor (FSTL1.37) formulated in the Wearable Injector Evolve-FSTL1. Area of Impact The targeted area of impact is to restore cardiac function and reduce progression to heart failure in patients after myocardial Infarction Mechanism of Action FSTL1.37 activates the controlled proliferation of progenitor heart cells within […]

Targeting stromal progenitors to prevent the development of heart failure

Translational Candidate Monoclonal antibody targeting Ectonucleotide phosphodiesterase/pyrophosphatase 1 (ENPP1) Area of Impact Heart disease: To prevent the development of heart failure after heart attacks Mechanism of Action After myocardial infarction, myofibroblast progenitors express ENPP1. ENPP1 is a type II transmembrane protein that hydrolyzes extracellular ATP and hydrolytic products generated by ENPP1 initiate an inflammatory cascade […]

Drug Discovery & Stem Cell Models for Cardiovascular Disease Conference

A Phase I, Pilot Study of Human Embryonic Stem Cell-Derived Cardiomyocytes in PaTients with ChrOnic Ischemic Left VentRicular Dysfunction (HECTOR)

Therapeutic Candidate or Device The therapeutic candidate is human embryonic stem cell-derived cardiomyocytes (hESC-CMs) as a new therapy for chronic ischemic cardiomyopathy patients Indication hESC-CMs will be indicated for treatment of heart failure (HF) and for preventing progression to HF in patients with chronic ischemic cardiomyopathy. Therapeutic Mechanism There are two commonly accepted mechanisms by […]