Stage of Program: Translational Tool/Bottleneck
Development of small molecule screens for autism using patient-derived iPS cells
Autism Spectrum Disorders (ASDs) are a heritable group of neuro-developmental disorders characterized by language impairments, difficulties in social integrations, and the presence of stereotyped and repetitive behaviors. There are no treatments for ASDs, and very few targets for drug development. Recent evidence suggests that some types of ASDs are caused by defects in calcium signaling […]
Magnetic Particle Imaging: A Novel Ultra-sensitive Imaging Scanner for Tracking Stem Cells In Vivo
We aim to develop, test and validate a new, sensitive and affordable scanner for tracking the location of injected cells in humans and animals. This new scanning method, called Magnetic Particle Imaging, will ultimately be used to track the location and viability of stem cells within the human body. It could solve one of the […]
Development of Synthetic Microenvironments for Stem Cell Growth and Differentiation
Currently, many chronic diseases and injuries do not have effective cures; millions of people suffer from disabilities while carrying on daily lives without appropriate medical assistance. Advances in human pluripotent stem cells (hPSCs) research have provided the potential hope for significant improvements of disease treatment and management. The success of stem cell-based therapy will have […]
Development of a Hydrogel Matrix for Stem Cell Growth and Neural Repair after Stroke
Stroke is the leading cause of adult disability. Most patients survive their initial stroke, but do not recover fully. Because of incomplete recovery, up to 1/3 of stroke patients are taken from independence to a nursing home or assisted living environment, and most are left with some disability in strength or control of the arms […]
Site-specific integration of Lmx1a, FoxA2, & Otx2 to optimize dopaminergic differentiation
The objective of this study is to develop a new, optimized technology to obtain a homogenous population of midbrain dopaminergic (mDA) neurons in a culture dish through neuronal differentiation. Dopaminergic neurons of the midbrain are the main source of dopamine in the mammalian central nervous system. Their loss is associated with one of the most […]
Development and Application of Versatile, Automated, Microfluidic Cell Culture System
Supported in part by a previous CIRM Tools and Technologies Grant [REDACTED], we have optimized and scaled up highly advanced (microfluidic) cell culture chips into manufacturable form, produced prototype instruments to drive these chips, and demonstrated that we can culture cells, dose them with combinations of reagents, and export them back off the chip. Since […]
Engineering microscale tissue constructs from human pluripotent stem cells
Tissues derived from stem cells can serve multiple purposes to enhance biomedical therapies. Human tissues engineered from stem cells hold tremendous potential to serve as better substrates for the discovery and development of new drugs, accurately model development or disease progression, and one day ultimately be used directly to repair, restore and replace traumatically injured […]
Enhancing Survival of Embryonic Stem Cell-Derived Grafts by Induction of Immunological Tolerance
Although ESC-based therapies hold great promise for the cure of a wide diversity of degenerative diseases, rapid progress to actual human clinical trials is hindered by the lack of preclinical data for specific ESC-based therapies. I aim to move the process forward by establishing a protocol in which immune system cells are reproducibly produced from […]
Bioengineering technology for fast optical control of differentiation and function in stem cells and stem cell progeny
Embryonic stem (ES) cells potentially could provide clinically important replacement tissue for central nervous system (CNS) disease treatment, and regenerative medicine approaches involving ES cells have been suggested for common CNS disorders. But it has been difficult to produce the right kind of replacement tissues from ES cells because the “differentiation”, or cell-type specification process, […]
Addressing the Cell Purity and Identity Bottleneck Through Generation and Expansion of Clonal Human Embryonic Progenitor Cell Lines
Human embryonic stem (hES) cells and induced pluripotent (iPS) cells, such as reprogrammed skin cells, offer the potential to revolutionize medicine because they can replicate indefinitely and become virtually any cell in the body. They therefore have the potential to provide a limitless source of cells to replace cells lost to injury (spinal cord, skin […]