Stage of Program: Translational Tool/Bottleneck


AO Wide-Field Microscope

A deeper understanding of the biological mechanisms that govern stem cells requires detailed, real-time image analysis of living cells. Currently, conventional live microscopy techniques are ineffective at imaging features like the nucleus in the center of a cell, principally due to aberrations caused by imaging through cytoplasm, organelles and other molecules inside the cell. Similar […]

TAT Cell-Permeable Protein Delivery of siRNAs for Epigenetic Programming of Human Pluripotent and Adult Stem Cells

The rapid progress of embryonic stem cell, induced-pluripotent cell, and adult stem cell research opens the door to thousands of promising, new medical applications and discoveries. However, one of the major obstacles in translating these basic science discoveries into safe therapies for patients is the risk of acquiring mutations from viral and DNA vectors. Exposure […]

Synthetic Matrices for Stem Cell Growth and Differentiation

There is a critical need for new technologies to facilitate growth and differentiation of human embryonic stem cells (hESC) using clinically acceptable, animal-free reagents. In particular, most currently used culture conditions are not acceptable for standardized production of clinical grade cell products. We propose to develop novel, well-defined, synthetic extracellular matrices for growth and differentiation […]

Scaleup of Versatile, Fully Automated, Microfluidic Cell Culture System

We are proposing to optimize and scale up a highly advanced (microfluidic) cell culture system into manufacturable form. This system will allow researchers to: Identify stem cell culture and differentiation conditions Identify genes and small molecules effecting stem cell self-renewal and differentiation, and Identify genes and small molecules involving or effecting reprogramming of differentiated cells. […]

Microfluidic Platform for Screening Chemically Defined Conditions that Facilitate Clonal Expansion of Human Pluripotent Stem Cells

Human pluripotent stem cells (hPSCs) hold a great potential to treat many devastating injuries and diseases. However, current hPSC cloning still faces challenges in creating animal product-free culture conditions for performing genetic manipulation and induced differentiation of hPSCs for cell-based therapy. In order to obtain the ideal culture conditions for hPSC cloning, microfluidic technology can […]

Derivation of Parkinson’s Disease Coded-Stem Cells (PD-SCs)

Parkinson’s disease (PD) is currently the most common neurodegenerative movement disorder, severely debilitating approximately 1-2% of the US population. The disease is caused by a selective loss of dopamine-producing neurons located in a specific region of the brain. This loss leads to significant motor function impairment and age-dependent tremors. Unfortunately there is currently no cure […]

Generation of clinical grade human iPS cells

The therapeutic use of stem cells depends on the availability of pluripotent cells that are not limited by technical, ethical or immunological considerations. The goal of this proposal is to develop and bank safe and well-characterized patient-specific pluripotent stem cell lines that can be used to study and potentially ameliorate human diseases. Several groups, including […]

New Technology for the Derivation of Human Pluripotent Stem Cell Lines for Clinical Use

Since their discovery almost ten years ago, there has been steady progress towards the application of human embryonic stem (ES) cells in medicine. Now, the field is on the threshold of a new era. Recent results from several laboratories show that human skin cells can be converted to cells resembling ES cells through simple genetic […]

Derivation of New ICM-stage hESCs

Recent studies in the derivation of rodent pluripotent epiblast stem cells and their molecular characterizations have provided strong evidence that the conventional human embryonic stem cells may represent a distinct, later developmental stage, i.e. late epiblast stage, than the conventional murine embryonic stem cells, which is a “capture” of the ICM stage. Those two stages […]

Derivation of New ICM-stage hESCs

Recent studies in the derivation of rodent pluripotent epiblast stem cells and their molecular characterizations have provided strong evidence that the conventional human embryonic stem cells may represent a distinct, later developmental stage, i.e. late epiblast stage, than the conventional murine embryonic stem cells, which is a “capture” of the ICM stage. Those two stages […]