Year 1

During this first year of our project we have largely focused on testing various methods to directly differentiate human ES cells into neurons. As described in more detail below we were very successful and developed ways to differentiate human stem cell lines into neuronal cells with high purity and good maturation characteristics. For example, we can analyze the electrical currents in these cells which are important functional properties of neurons and we observed that these cells indeed behave just like neurons in the brain. More specifically, the cells were able to generate action potentials which are necessary in the brain to transmit information from one neuron to the other as well as form synapses, which are the structures that connect the different neurons with each other.Because the differentiation of different stem cell lines needs to be robust and reproducible we spent a lot of time optimizing the protocol and tested many different stem cell lines. This revealed a high degree of reproducibility and purity of the stem cell-derived nerve cells and we have tested human embryonic stem cells (i.e. stem cells derived from the embryo) as well as induced pluripotent (iPS) cells (i.e. stem cells reprogrammed from human skin cells). Reassuringly, the same method works in all these cell lines with very similar dynamics and functional properties of the nerve cells.

We also have made significant advances to convert human fibroblasts into nerve cells directly and without going through an intermediate iPS cell state. We have identified a neuronal factor called NeuroD1 as critical co-factor that in addition to the three factors that we had identified earlier to work in mouse. Those 4 factors together now allowed the generation of fully functional so called “induced neuronal” (iN) cells from both fetal and early postnatal human foreskin fibroblasts. We have also tested a number of small molecules to attempt to increase the reprogramming efficiency.

Finally, we have generated some essential components that will allow us to study Rett Syndrome using these technologies that are being developed at the same time (described above). In the last year we have generated several lines of iPS cells from Rett Syndrome patients and are in the process of fully characterizing them. We plan to soon apply our optimized differentiation protocol to these cells as well as control cells to look for any possible disease trait that distinguishes cells from patients and controls.