Year 2
Stem cells, such as human embryonic stem cells and induced pluripotent stem cells (iPSCs), carry great potentials for cell replacement therapy, human diseases modeling and drug screenings. We proposed to use Rett syndrome (RTT) as a proof of principle, to establish a human cell xenografting paradigm (i.e., transplanting human cells into mouse/rat brains) to study the function of normal and diseased human neurons in vivo. During the 2nd year of funding, we gained new insights into the electrophysiological characteristics of RTT neurons. Specifically, we found that the neurotransmission phenotype of neurons derived from RTT patient-specific iPSCs was highly circuitry-dependent. On the other hand, when cell-intrinsic electrophysiological properties were measured, extremely stable abnormalities in action potential profiles, resting membrane potentials, etc. were observed, indicative of the validity of the culture system. Given that currently scientists have very limited control over the features of neuronal connections formed in culture conditions, our findings make the in vivo assessment of RTT neuronal properties even more desirable, because the circuitry features are more amenable in vivo, with anatomical cues. In light of aforementioned in vitro findings, we focused our attention to both cell-intrinsic electrophysiological characteristics of RTT neurons, as well as their connectivity or neural network properties, after neurons were integrated into host circuits in vivo following xenotransplantation. Our preliminary data demonstrated that the action-potential abnormalities of RTT neurons are preserved in vivo after xenotransplantation. So far we have established a relatively optimized system for studying human iPSC-derived RTT neurons integrated into mouse brains. We are poised to uncover not only the neuronal intrinsic electrophysiological properties but also the connectivity of wild type and RTT neurons with host circuits. Moreover, we have made substantial progress with regards to a novel technology, i.e., single neuron gene expression profiling coupled with electrophysiological recordings both in vitro and in vivo. Up to now, 8 RTT iPSC-derived neurons were profiled via RNA sequencing following electrophysiological recordings, and some interesting clues have already been revealed. Currently we are collecting more neurons and we expect to make unprecedented discoveries with mechanistic insights into RTT disease pathophysiology, which will facilitate the development of novel therapies for RTT. This paradigm is also generally applicable for studying other neurological disorders.