Year 3

The identification and development of an ideal cell-based therapy for a complex neurodegenerative disease requires the rigorous evaluation of both efficacy and safety of different sources and subtypes of hNSCs. The objective of this project has been to fully evaluate and identify the optimal stem cell type for a cell based therapy for refractory Parkinson’s Disease (PD) using the systemically MPTP-lesioned Old World non-human primate (NHP) (the St. Kitts Green Monkey) the most authentic animal model of the actual human disease. Among a list of plausible potentially therapeutic stem cell sources, 7 candidates have been evaluated head-to-head. The intent has been that the stem cell type (and its derivatives) safely producing the largest improvement in behavioral scores (based on a well-established NHP PD score – the Parkinson’s Factor Score [PFS] or ParkScore (which closely parallels the Hoehn–Yahr scale used in human patients, and is an accurate functional read-out of nigrostriatal dopamine [DA] activity) — as well as a Healthy Behaviors Score [HBS] (similar to the activities-of-daily-living [ADL] on the major Parkinson’s rating scale and allows quantification of adverse events) — will be advanced towards IND-enabling studies, to an actual IND filing, and ultimately a clinical trial.

Candidate cells have been transplanted into specific sub-regions of the nigrostriatal pathway of MPTP-lesioned NHPs. Animals undergo behavioral scoring for analysis of severity of Parkinsonian behavior at multiple time points pre- and post-cell transplantation. At sacrifice, biochemical measurements of DA content are made. Tissue is also analyzed to determine the fate of donor cells; the status of the host nigrostriatal pathway; the number of alpha-synuclein aggregates; degree of inflammation; any evidence of adverse events (e.g., tumor formation, cell overgrowth, emergence of cells inappropriate to the CNS).

We have made substantial progress in what will amount to the largest and most comprehensive head-to-head analysis of stem cell transplanted into any disease model to date, let alone behavioral analysis into a primate model of PD. Behavioral data have been collected on ~100 monkeys comprising >10,000 observation data points. We have identified a single Developmental Candidate (DC) that shows consistent and dramatic improvement in severely Parkinsonian NHPs (i.e., a significant decrease in Parkinsonian symptoms over the entire evaluation period), reflecting a restitution of DA function – human embryonic stem cell (hESC-derived) ventral mesencephalic (VM) precursors. We also suggest adding a mechanism to these cells for insuring unambiguous safety and invariant lineage commitment (a construct already generated and inserted into this DC, and recently engrafted into some initial monkeys).

We believe are ready for IND-enabling studies, including additional long-term pre-clinical behavioral studies of hESC-derived hVM cells that bear the above-mentioned “safety construct” – combined with additional biochemical assays of DA metabolism, histological assessments, serial profiling to insure genomic stability. Scale-up conditions for this DC are defined and reproducible and a working cell bank has been established.