Year 3 & NCE
Parkinson’s disease (PD) is a neurodegenerative movement disorder that affects more than six million people worldwide. The main symptoms of the disease result from the loss of neurons from the midbrain that produce dopamine (referred to as “dopaminergic” or DA neurons).Human embryonic stem cells (hESC) offer an exciting opportunity to treat Parkinson’s disease by transplanting hESC-derived DA neurons to replace those that have died. There are actually two groups of midbrain DA neurons in the human brain. Those from the substantia nigra (SN) are highly susceptible to degeneration in Parkinson’s patients while those from the ventral tegmental area (VTA) are not. These two types of neurons have similar features but have different functions and it is important to ensure that DA neurons from hESC are the correct SN type before they are used in therapy. The primary goal of this research was to study these two neuronal types in animals and determine if the distinguishing features discovered in mice or rats can be used to more easily recognize and purify SN-type DA neurons made from hESC.
One of the discoveries made in this research is that SN and VTA neurons show differences in how they make connections within the brain. We have been able to identify some of the molecules that guide each neuron to connect to it appropriate target and have found that SN and VTA neurons placed in the petri dish can be distinguished from each other by their response to guidance molecules. Work in the final period of this grant has focused on testing guidance response in hESC-derived DA neurons and we have found that many of the neurons produced from hESC do show SN-like responses to guidance molecules. This discovery is being further developed as a screening tool to help guide our ongoing efforts to make increasingly pure populations of DA neurons from hESC.
Future human trials will likely utilize such DA neurons but since embryonic stem cells have the potential to develop into any type of cell in the body, it is important to ensure that the production methods used to make a therapeutic product for Parkinson’s disease do indeed specifically produce SN neurons. Prior to the research supported under this CIRM grant, the scientific community was not able to distinguish SN from VTA neurons outside of their normal brain environment and therefore had no ability to confirm whether a method produced one type selectively and not the other. Further refinements of the assay tools developed in our research may provide a practical means of quantifying the purity of a DA neuron preparation. This would have a significant impact transplantation therapy as well as provide useful insights into the molecular mechanisms that underlie proper connectivity and function of SN and VTA DA neurons in humans.