Year 4
Cellular reprogramming and the generation of induced pluripotent stem cells (iPSCs) from differentiated cells has enabled the creation of patient-specific stem cells for use in disease modeling. Reprogramming to the induced pluripotent state can be achieved through the ectopic expression of Oct4, Sox2, Klf4 and cMyc. Insight into the role that the reprogramming factors, various signaling pathways and epigenetic mechanisms play during the different stages of reprogramming remains limited, partly due to the low efficiency with which somatic cells convert to pluripotency. During the past year we have made great progress in (i) defining the molecular requirement for the reprogramming factors; (ii) gaining a better understanding of how repressive chromatin states control the reprogramming process; (iii) determining the differential regulation of chromatin states during reprogramming; (iv) identifying novel reprogramming stages; (v) assessing the three-dimensional organization of the genome during reprogramming; and (vi) determining the influence of a specific signaling pathway and its downstream effectors on different stages of the reprogramming process. Together, our findings provide novel mechanistic insights into the reprogramming process, which will form the basis of approaches to approve the efficiency of the process.