Therapeutic/Technology: Therapeutic Approach
Use of Human iPSC-derived Endothelial Cells for Calcific Aortic Valve Disease Therapeutics
Research Objective To develop drugs to treat Calcific Aortic Valve Disease (CAVD), the third leading cause of adult heart disease, by screening a stem cell-based platform based on CAVD patient-derived stem cells. Impact CAVD represents a major unmet medical need, with no treatments other than valve replacement. We will identify drugs, already proven to be […]
Autologous cell therapy for Parkinson’s disease using iPSC-derived DA neurons
Research Objective Autologous human dopaminergic neurons derived from patient-specific induced pluripotent stem cells Impact Parkinson's disease Major Proposed Activities Characterize differentiation from all 10 patient cell lines Characterize functionality of patient neurons matured in vitro Immunogenicity assessment Cryopreservation feasibility testing Investigate dose response in vivo Detect dopamine release in vivo Thousands of Californians suffer from […]
MSC delivery of an artificial transcription factor to the brain as a treatment for Angelman Syndrome
Research Objective Mesenchymal stem cells will be used to deliver an artificial transcription factor to neurons in the brain to treat a genetic disease. Impact It could lead directly to a treatment for Angelman Syndrome, but the approach could be used to alter gene expression in almost any brain disorder. It could overcome the brain […]
Scalable, Defined Production of Oligodendrocyte Precursor Cells to Treat Neural Disease and Injury
Research Objective The goal of this proposal is to develop an optimized, scalable process to manufacture high quality oligodendrocyte precursor cells (OPCs) from human pluripotent stem cells for treating human disease. Impact OPCs have therapeutic potential for spinal cord injury, restoration of cognitive function after cancer radiation therapy, inherited demyelinating disease, and potentially multiple sclerosis. […]
Novel Rejuvenated T Cell Immunotherapy for Lung Cancer
Research Objective Through this project, we would like to evaluate how this T-iPSC-based immunotherapy that we have developed can eliminate lung cancer cells effectively in vivo using xenografted SCID mice. Impact This novel T-iPSC-based immunotherapy will provide another effective treatment for lung cancer and possible other malignancies by supplying unlimited number of young and active […]
CRISPR/Cas9 nanoparticle enabled therapy for Duchenne Muscular Dystrophy in muscle stem cells
Research Objective Gene correction of muscle stem cells Impact These studies will develop a gene editing based therapy for one of the most prevalent lethal childhood disorders called Duchenne Muscular Dystrophy. Major Proposed Activities To identify the best MSNP-CRISPR candidates for CRISPR/Cas9 plasmid delivery in vitro to muscle stem cells To identify the best MSNP-STEM […]
Gingival mesenchymal stem cells as a novel treatment modality for periodontal tissue regeneration
Research Objective To develop a novel regenerative and adhesive hydrogel encapsulating patient's' gingival stem cell which can potentially be used as an adhesive dental hydrogel for periodontal tissue regeneration. Impact Upon successful completion, this project will introduce a promising treatment approach for maxillofacial defects presenting an innovative treatment modality for periodontal tissue regeneration. Major Proposed […]
A new phenotypic screening platform that identifies biologically-relevant targets and lead compounds for the treatment of Parkinson’s disease
Research Objective Demonstrate that our HitFinder™ library can be screened for phenotypic changes in A53T-IPSC-derived dopaminergic neurons and use a secondary handle to identify the targets responsible. Impact This technology combines phenotypic screening and target-ID eliminating the need to bias assays and/or screening libraries permitting application directly in iPSC-derived cells. Major Proposed Activities Prepare screening […]
IVD rejuvenation using iPSC-derived notochordal cells
Research Objective To identify a new therapeutic agent for disc regeneration using novel pluripotent stem cells and injectable beads that support differentiation and provide biomechanical strength. Impact If this study is successful, we will be able to bring completely new biologically and biomechanically relevant solution to degenerated intervertebral discs. Major Proposed Activities To optimize stem […]
Bone Marrow Targeting of Hematopoietic Stem Cells Engineered to Overexpress 25-OH-VD3 1-α-hydroxylase for Acute Myeloid Leukemia Therapy
Research Objective We propose a new approach to differentiation therapy for acute myeloid leukemia by producing local level of high-dose vitamin D in bone marrow via cell therapy with engineered hematopoietic stem cells Impact If proven successful, the proposed research can serve as a major breakthrough in the treatment of multiple subtypes of AML and […]